Embryonic hemoglobin的問題,透過圖書和論文來找解法和答案更準確安心。 我們找到下列問答集和懶人包總整理

Embryonic hemoglobin的問題,我們搜遍了碩博士論文和台灣出版的書籍,推薦Malik, Punam (EDT)/ Tisdale, John (EDT)寫的 Gene and Cell Therapies for Beta-Globinopathies 可以從中找到所需的評價。

另外網站Hb&g也說明:Hemoglobin is a protein in your red blood cells that carries oxygen from your ... Thalassemia Embryonic Hemoglobin Sickle-Cell Disease Patient Hemoglobin ...

國立臺灣大學 生理學研究所 林水龍所指導 施宏謀的 乙型轉化生長因子透過抑制缺氧誘導因子2α以減少細胞製造促紅血球生成素 (2021),提出Embryonic hemoglobin關鍵因素是什麼,來自於促紅血球生成素、缺氧誘導因子2α、周細胞、肌纖維母細胞、乙型轉化生長因子。

而第二篇論文高雄醫學大學 臨床醫學研究所 黃尚志所指導 顏正杰的 遠紅外線輻射對於慢性腎臟病患溫韋伯氏因子之影響 (2021),提出因為有 慢性腎臟病、遠紅外線輻射、血液透析、溫韋伯氏因子的重點而找出了 Embryonic hemoglobin的解答。

最後網站Predominance of Hemoglobin Gower 1 in Early Human ...則補充:Hemoglobin Gower 1, the structure of which is thought to be ɛ 4 , is the predominant hemoglobin in early human embryonic life. This finding suggests that ...

接下來讓我們看這些論文和書籍都說些什麼吧:

除了Embryonic hemoglobin,大家也想知道這些:

Gene and Cell Therapies for Beta-Globinopathies

為了解決Embryonic hemoglobin的問題,作者Malik, Punam (EDT)/ Tisdale, John (EDT) 這樣論述:

Hemoglobin defects, specifically sickle cell disease & thalassemia, combined, constitute the most common monogenic disorders in the world. In fact, nearly 2% of the world's population carries a globin gene mutation. The transfer of the corrective globin gene through the HSC compartment by allogeneic

HSC transplantation (HSCT) has already proven curative in both SCD and thalassemia patients, and provides the proof of concept that genetic manipulation of the defective organ might be equally therapeutic. However, procedural toxicities and the requirement of an HLA-matched sibling donor limit this

approach to a fraction of affected individuals. The editors review the progress & the state of the field in HSCT for hemoglobinopathies & shed light on the major changes expected in the next decade. Although allogeneic HSCT is a curative option, it is limited by the availability of matched donors,

which are often available only to 15-20% of patients. An alternative to allogeneic HSCT is genetic correction of autologous HSCs, to overcome donor availability & immune side effects. This Book reviews the progress made on additive gene therapy approaches & the current state of the field. Finally, t

argeted genetic correction is emerging as a novel therapeutic strategy in the hemoglobinopathies. Although ideal, the inefficiency of targeted correction was rate limiting for translation of this technology to the clinic. With advancements in zinc finger nucleases and TALE endonuclease mediated targ

eted correction, correction frequencies in hematopoietic stem cells is now reaching levels that may become clinically relevant. Furthermore, the ability to generate autologous embryonic stem cell like cells from primary somatic cells (skin fibroblasts or hematopoietic cells) of the affected individu

al has allowed for the potential application of genetic correction strategies.This Book reviews upcoming genetic strategies to reactivate fetal hemoglobin production and research advances. Punam Malik received her M.D. degree from Lady Hardinge Medical College, University of Delhi, India. She comp

leted a pediatric residency at Kalawati Saran Children;s Hospital, Delhi and at Children’s Hospital Los Angeles, Los Angeles, California, and then then trained in hematology-oncology at Children’s Hospital Los Angeles, where she served as fellow, Assistant Professor from 1999-2005 and a tenured Asso

ciate Professor in 2006 at CHLA, University of Southern California. She joined Cincinnati Children’s Hospital Medical Center and the University of Cincinnati in 2007 as the Program Director of the Gene and Cell Therapy Program and in 2008, she became the director of the Translational Core Laboratori

es at CCHMC. In 2010, she became a Professor of Pediatrics. In 2012, she became the director of the Cincinnati Comprehensive Sickle Cell Center, and in 2014 she became the Marjorie Johnson Endowed Professor of Gene and Cell Therapy. Her group focuses on the pathobiology of sickle cell disease and th

alassemia, identifying mechanisms of organ pathologies in sickle cell disease, and developing curative strategies for hemoglobinopathies and other hematopoietic stem cell disorders through transplantation of genetically modified autologous bone marrow stem cells. John Tisdale received his M.D. degre

e from the Medical University of South Carolina in Charleston. He completed an internal medicine and chief residency at Vanderbilt University Medical Center in Nashville and then trained in hematology in the Hematology Branch, National Heart, Lung and Blood Institute (NHLBI), where he served as a po

stdoctoral fellow. He joined the Molecular and Clinical Hematology Branch of NHLBI in 1998 and is now the Chief of the Cellular and Molecular Therapeutics Section. His group focuses on developing curative strategies for sickle cell disease through transplantation of allogeneic or genetically modifie

d autologous bone marrow stem cells.

乙型轉化生長因子透過抑制缺氧誘導因子2α以減少細胞製造促紅血球生成素

為了解決Embryonic hemoglobin的問題,作者施宏謀 這樣論述:

背景:貧血是慢性腎臟病常見的併發症,且和病人預後有關並影響生活品質。腎性貧血最常見的原因是促紅血球生成素(EPO)不足。腎臟製造EPO的細胞是周細胞(pericytes),位於血管周邊,為製造膠原蛋白的細胞,可偵測血氧及血紅素濃度。在纖維化過程中,周細胞增生且分化為α-平滑肌動蛋白陽性(smooth muscle actin+)(α-sma+)的肌纖維母細胞(myofibroblasts),製造病理性細胞外膠原蛋白基質導致腎臟纖維化。Pericytes製造EPO主要透過缺氧誘導因子(Hypoxia-inducible factor) (HIF)2α (HIF2α)活化EPO基因上5’端的增強

子。Pericytes也可以由乙型轉化生長因子(Transforming growth factor-β1)(TGF-β1)刺激分化為myofibroblasts。Myofibroblasts因EPO基因上5’側翼區(flanking region)的高度甲基化而喪失製造EPO的能力。然而當進行pericytes初代培養(primary culture),在繼代2至3代後,它無法維持pericytes的表現型,導致EPO製造能力下降。目前仍沒有理想的細胞株類似於腎臟可製造EPO的細胞,因此對於EPO調控機轉的研究及治療方式的進展受到侷限。以前最常用來研究EPO的製造是使用肝癌的細胞株,Hep3

B和HepG2。然而最近的研究認為,調控肝EPO製造的增強子位於EPO基因的3’端,和調控腎臟EPO的5’端增強子不同。而且腎臟製造EPO的細胞是類似纖維母細胞的pericytes,而不是像上皮細胞的Hep3B和HepG2。方法:我們篩選目前有的老鼠纖維母細胞的細胞株,發現C3H10T1/2(以下簡稱10T1/2)細胞可製造的EPO比NIH/3T3(以下簡稱3T3)細胞更高。於是我們進行10T1/2細胞EPO製造機轉的相關研究,以及探討10T1/2細胞之纖維化基因的變化。我們以定量聚合酶連鎖反應(quantitative PCR)研究這株細胞各種細胞型式的基因表現,也將細胞培養在缺氧環境及正常

氧氣供應環境中,或使用脯胺酸羥化酶結構(Prolyl hydroxylase domain)(PHD)抑制劑誘導HIF,以評估缺氧誘導基因的表現,並以西方墨點法評估HIF1α和HIF2α在10T1/2及3T3細胞中缺氧時的表現。我們也使用針對HIF1α或HIF2α的小干擾RNA(small-interfering RNA)(siRNA)進行基因敲落實驗,研究EPO是藉由何種HIF來調控缺氧誘導基因。為了研究HIF的DNA結合區域,我們使用染色質免疫沉澱法(Chromatin immunoprecipitation),辨認是否HIF1α或HIF2α結合到EPO 5’端增強子、3’端增強子或啟動子

。我們也藉由甲基化特異性PCR (methylation-specific PCR)(MSP)研究10T1/2及3T3細胞的DNA甲基化。另外也研究10T1/2細胞在TGF-β1刺激下如何抑制EPO表現,並延伸至動物實驗。在細胞實驗,我們使用TGF-β1或activin receptor-like kinase-5(ALK5)抑制劑 SB431542研究對TGF-β1–ALK5的下游對EPO-HIF的影響。而我們每天給與老鼠腹腔注射SB431542,並分析整個腎臟及從Col1a1-GFPTg老鼠分離col1a1-GFP+ pericytes,在動物實驗驗證整個理論基礎。結果與討論:和peric

ytes一樣,10T1/2細胞在TGF-β1刺激後分化為α-sma+ myofibroblasts。siRNA實驗亦證實和腎臟製造EPO的細胞一樣,10T1/2細胞也是藉由HIF2α來誘導EPO產生。然而,我們研究發現TGF-β1抑制產生HIF2α蛋白的Epas1基因,主要是藉由活化ALK5,而降低缺氧或PHD抑制劑誘導的EPO產生。在動物實驗方面,老鼠進行輸尿管結紥手術(Unilateral Ureteral Obstruction)(UUO)引發腎臟纖維化損傷,讓腎臟以及myofibroblasts的Tgfb1基因表現增加,並降低Epas1及Epo基因的表現,且可被ALK5抑制劑SB431

542所恢復。我們先前的研究認為TGF-β1的訊號會在UUO後會立刻增加,且也會在給予72小時後透過pericytes的甲基化抑制EPO的產生。然而本篇的研究証實在給予TGF-β1 24小時後就可抑制Epas1及Epo基因的表現。因此我們提出TGF-β1可以藉由兩個機轉來抑制EPO,在早期是直接抑制基因表現,而後才是由甲基化抑制基因。在老鼠UUO實驗中,不管是第四天的UUO腎臟或myofibroblasts,SB431542藉由抑制ALK5使TGF-β1訊號無法傳遞,可恢復其Epo的表現。結論:10T1/2細胞具有和pericytes一樣的性質,都是藉由HIF2α促使EPO表現。TGF-β1不

僅讓10T1/2細胞具有myofibroblasts的特性,也會抑制Epas1-Epo的產生。本研究也証實了in vivo動物實驗中,TGF-β1對pericytes也有抑制Epas1-Epo的效果。因此抑制TGF-β1-ALK5的訊號可能可以提供新的治療方式讓受損的腎臟恢復EPO製造。

遠紅外線輻射對於慢性腎臟病患溫韋伯氏因子之影響

為了解決Embryonic hemoglobin的問題,作者顏正杰 這樣論述:

凝血功能異常會增加慢性腎臟病(chronic kidney disease,CKD)病患發生急性冠心症、透析廔管阻塞或胃腸道出血等併發症,嚴重影響病患生命與生活品質。遠紅外線(far-infrared radiation,FIR)可透過熱效應與非熱效應改善血液透析(hemodialysis,HD)病患自體廔管的暢通率與成熟率,然而臨床上發現延遲FIR的照射時間有導致透析後止血時間延長的現象,經研究發現FIR照射可透過阻斷血小板與溫韋伯氏因子(von Willebrand factor,vWF)的結合以抑制血小板凝集,加上vWF為CKD病患凝血功能異常與預測HD病患廔管栓塞的指標,因此欲探討F

IR照射對於CKD病患vWF之影響。本研究招募HD病患、CKD病患與腎臟功能正常之對照組個案,檢驗各族群接受單次40分鐘的FIR照射前後與HD病患接受持續 3個月的FIR照射前後,血漿中vWF濃度與活性的改變。我們發現接受單次FIR照射後,各族群的vWF活性—濃度比值有降低的趨勢,CKD病患依預估腎絲球過濾率與尿液總蛋白與肌酸酐比值分組亦呈現一致的改變,HD病患接受持續 3個月的FIR照射後,vWF活性—濃度比值相較為照射前有顯著的降低,所有次群組皆呈現一致的改變,多變項迴歸分析顯示無使用HMG-CoA還原酶抑制劑、糖尿病與血紅素越高為顯著預測因子,推測FIR可能會降低CKD病患vWF中超高分

子量多聚合體的比例,進而降低vWF與血小板凝集產生血栓的效果,導致凝血時間的延長,相關機轉則有待進一步的驗證。